
Simple Chat 
Version 2.1.2 

Support Email: support@llama.software  

Setup 
To set up the Chat System: 

1. Simply Drag and Drop the ChatPanel Prefab into a Canvas 

2. Attach ChatPlayer Script to the root of your Player object 

a. (Optional) If you have a lot of code to manage input, you may want to disable “Use For 

Input Handling” and migrate the code manging opening/closing the Chat System within 

ChatPlayer to your input handler. 

3. Customize the Chat System to your liking 

What’s New 

Now in 2.1.2: 

• Mirror 26 (November 2020) is now supported. Updated with the breaking changes from 

NetworkMessage Serialization https://github.com/vis2k/Mirror/pull/2317 

• Improved code documentation 

• Migrated classes from ChatSystem.XXXX to their independent classes under the namespace 

LlamaSoftware.UNET.Chat.Model 

mailto:support@llama.software
https://github.com/vis2k/Mirror/pull/2317


Customizing Chat System 

Basic Configuration 

 

Required Fields 
You will likely not want to touch Content Panel, Input Field, or Chat Message Prefab, unless you are 

modifying the structure of the Chat System.  

Content Panel: All Chat Messages will be added as children to this object. 

Input Field: The input field that will be receiving text and sending messages. 



Chat Message Prefab: The Prefab all chat messages will spawn as. 

Placeholder Message: The placeholder text that will be displayed to the user when there is no text 

typed in the Input Field. {0} will be replaced with the Name of the Channel the message will be sent to. 

See: https://docs.microsoft.com/en-

us/dotnet/api/system.string.format?redirectedfrom=MSDN&view=netframework-4.7.2#overloads  

Message Template: The Message Template is the format messages will be displayed on the UI. {0} is the 

Channel Color. {1} is the Channel Name. {2} is the Sending Player Name. {3} is the message text. See: 

https://docs.microsoft.com/en-

us/dotnet/api/system.string.format?redirectedfrom=MSDN&view=netframework-4.7.2#overloads  

Interactions 

These all control how the Panel behaves for the user. 

Auto Open Chat: If checked, the Chat Panel will become visible whenever a message is received. 

Auto Close Chat: If checked, the Chat Panel will try to hide after Hide Chat Delay. 

Max Messages: The limit to how many messages the Chat System will retain before removing the oldest 

ones from the UI. 

Hide Chat Delay: The number of seconds the Chat Panel will remain visible after an event before trying 

to hide itself. 

Scroll To Bottom Delay: Delay after displaying a message before forcing the scroll view to go to the 

bottom. Setting too low a value can result in improper scrolling sometimes. Setting too high a value can 

result in a very noticeable delay between message creation and scrolling. 

Chat Channels 

In this section you should add your possible Chat Channels for your game. It is important that the 

Channel is unique across all Chat Channels. You can add them dynamically at runtime now as well 

without causing an issue by doing: ChatSystem.AddChatChannel(ChatChannel); 

Name: The Name that will be displayed to the user when receiving messages from this channel. 

Color: The color the Name and Player name will be displayed in. 

Channel: A unique number identifying this Chat Channel. 

https://docs.microsoft.com/en-us/dotnet/api/system.string.format?redirectedfrom=MSDN&view=netframework-4.7.2#overloads
https://docs.microsoft.com/en-us/dotnet/api/system.string.format?redirectedfrom=MSDN&view=netframework-4.7.2#overloads
https://docs.microsoft.com/en-us/dotnet/api/system.string.format?redirectedfrom=MSDN&view=netframework-4.7.2#overloads
https://docs.microsoft.com/en-us/dotnet/api/system.string.format?redirectedfrom=MSDN&view=netframework-4.7.2#overloads


Advanced Configuration 

 

Network Message Channel: You won’t need to touch this unless you have a bunch of custom network 

code sending on channels. If you do, then just find a free channel if this is taken. Not used at all with 

Mirror. 

Language Filter 
Enable if you would like to filter out words. Add as many (or few) word filters as you would like. Note 

these cannot be easily adjusted at runtime so setting them up first is important. Please note that 

Regular Expressions unfortunately generate garbage when matching. 

Regular Expression: The Regular Expression that will be matched. See also: Regex Tester. 

Ignore Case: If it should be a case insensitive match. 

Replace With: The string that will be shown to the user if this regular expression was matched. 

Chat Commands 
Enable if you would like users to be able to type commands like /help /ping /stuck or whatever you 

would like. 

Command: The name of the command. The user will type /command to execute it. 

https://docs.microsoft.com/en-us/dotnet/standard/base-types/regular-expression-language-quick-reference
https://www.regexpal.com/


Send Message After Executing: If a message should be sent after the command is executed. Useful in 

cases like channel swap commands. For example if you have all chat open, but would like to change to 

team chat, typing a command like /team hi team! Would send “hi team!” over the network after 

executing a command you have written to change the chat channel to their current team. 

Function: A UnityEvent – will call whatever functions you place on the queue. Just a like Click on a 

Button works. 

Events 

 

All of these are UnityEvents – will call whatever functions you place on the queue. Just like Click on a 

Button works. 

On Chat Open: Called when ChatSystem.OpenChat is called - whenever the Chat Panel should open. It is 

called regardless of whether it was already open or not. 

On Chat Close: Called when ChatSystem.HideChat is called – whenever the Chat Panel should close. 

On Send Message: Called when ChatSystem.UpdateChatMessages is called – whenever a message is 

sent over the network. Note it will not be called when UpdateChatMessages is called and the Input Field 

has no text. 

https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/UnityEvents.html


Debug Info 

 

Read-only information about what’s happening with the Chat System right now. 

Is Open: Whether or not the Chat Panel thinks it’s open. 

Number of Messages: The number of messages in the Chat System’s cache. Once it reaches Max 

Messages it will start removing the old ones. 

Active Channel: The current channel the local player is sending messages on 

Language Filter Enabled: Whether or not the Language Filter is enabled. 

Object Pool Stats > Pool Size: Total number of objects available in the pool, used or not. 

Object Pool Stats > Available Objects: Number of available objects to use when a new message is 

requested to be created. 

 

How Tos 

Open the Chat Panel 
To open the Chat Panel – either use the ChatPlayer’s input handling (and press Enter while the game is 

running), or look there for how the Chat System open/closing and channel management is done.  

From your code or event you can call: ChatSystem.OpenChat(bool focusInputField, uint 
channel) 

Close the Chat Panel 

To close the Chat Panel – either use the ChatPlayer’s input handling (and press Escape while the game is 

running), or look there for how the Chat System open/closing and channel management is done.  



From your code or event, you can call ChatSystem.HideChat() 

Join a Chat Channel 

To join a Chat Channel, the ChatPlayer needs to know what the channel identifier is 

(ChatChannel.Channel).  

From your code or event, you can call ChatPlayer.JoinChannel(uint Channel) to make them 

aware of the Channel.  

Leave a Chat Channel 
To leave a Chat Channel, the ChatPlayer needs to “forget” what the channel identifier is 

(ChatChannel.Channel).  

From your code or event, you can call ChatPlayer.LeaveChannel(uint Channel) to make them 

unaware of the Channel.  

Dynamically Create a Chat Channel 

First determine what the use case is for dynamically creating your chat channel. It may be more 

beneficial to define all channels up front and just have a player join the channel later. If you decide you 

do need it to be dynamic, you can do the following: 

ChatChannel newChannel = new ChatChannel(); 

newChannel.Name = “your new channel name”; 

newChannel.color = new Color(rgba); 

newChannel.Channel = 10; // make sure this is really a unique number! 

ChatSystem.AddChatChannel(newChannel); 
 

Send More Data Over the Network (for Chat Messages) 
If for some reason you require additional information in your ChatMessages, the ChatMessage class 

within ChatSystem is extensible and it should be fairly clear how to add what you need from the existing 

code. 

Currently ChatMessages support:  

    string Message - message player has sent 

    uint Channel - that the message is sent on 

    string SenderName - the name of the player who has sent the message 

If you would like to extend this to, for example always show the player's team in parenthesis you could 

do the following: 

1. Add public int Team to ChatEntry struct 

2. In ChatMessage#Serialize add: writer.Write(entry.Team); 

• If you are using Mirror 24+ this is done in ChatMessageFunctions.cs 

3. In ChatMessage#Deserialize add: entry.Team = reader.ReadInt32(); 



• If you are using Mirror 24+ this is done in ChatMessageFunctions.cs 

4. Adjust prefab to how you wish for the team to be displayed, and within 

ChatSystem#CreatePrefabAndAddToScreen, populate it accordingly 

5. Also adjust ChatEntry creation in ChatSystem#UpdateChatMessages 

 


	Setup
	Customizing Chat System
	Basic Configuration
	Required Fields
	Chat Channels

	Advanced Configuration
	Language Filter
	Chat Commands

	Events
	Debug Info
	Open the Chat Panel
	Leave a Chat Channel
	Send More Data Over the Network (for Chat Messages)


